
research papers

1124 Padilla & Yeates � Diagnosis of hemihedral twinning Acta Cryst. (2003). D59, 1124±1130

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

A statistic for local intensity differences: robustness
to anisotropy and pseudo-centering and utility for
detecting twinning

Jennifer E. Padilla and Todd O.

Yeates*

University of California, Los Angeles,

Department of Chemistry and Biochemistry,

611 Charles E. Young Drive East, Los Angeles,

CA 90095-1569, USA

Correspondence e-mail: yeates@mbi.ucla.edu

# 2003 International Union of Crystallography

Printed in Denmark ± all rights reserved

A new approach to analyzing macromolecular single-crystal

X-ray diffraction intensity statistics is presented. Instead of

considering re¯ections in resolution shells, differences

between local pairs of re¯ection intensities are taken

and normalized separately. When the two re¯ections to

be compared (having intensities I1 and I2, respectively)

are chosen appropriately, the behavior of the parameter

L = (I1 ÿ I2)/(I1 + I2) is insensitive to phenomena that tend to

confound traditional intensity statistics, such as anisotropic

diffraction and pseudo-centering. The distributions and

expected values for L take simple forms when the intensity

data are from ordinary crystals or from perfectly twinned

specimens. The robustness of the approach is demonstrated

with examples using real proteins whose diffraction data

appear aberrant by other methods of intensity analysis. The

new statistic is better suited than other available methods for

diagnosing perfect hemihedral twinning.
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1. Introduction

In a diffraction experiment, each structure factor is the sum of

separate scattering-factor vectors from the many atoms in the

crystal. By drawing an analogy to random walks, diffraction

intensities can be expected to follow well known distributions

®rst described by Wilson (1949) (reviewed in Giacovazzo,

1992; Drenth, 1999). The intensity distributions take different

forms under different circumstances, such as in centric zones

or when hemihedral twinning occurs. Intensity statistics are

therefore often used to analyze symmetry or to detect

anomalies in observed data sets.

In typical applications of intensity statistics, intensities are

®rst normalized in resolution shells. This deals with the

problem of re¯ections at different resolutions having different

expected values. Following normalization in shells, cumulative

probability distributions of the intensities are examined or

various moments of the intensity distribution are compared

with theoretical values expected from Wilson statistics. These

current approaches implicitly assume that various re¯ections

in the same resolution shell have equal expected values. This

assumption fails under a variety of situations, including when a

crystal diffracts anisotropically or when pseudo-centering

gives rise to weak and strong classes of re¯ections. In such

cases, typical intensity statistics calculations give aberrant

results that cease to be useful for identifying centric zones or

for diagnosing twinning.



2. Statistics of local intensity differences

Here, we demonstrate the advantages gained by analyzing

intensity statistics in an alternate fashion, by examining local

differences between pairs of re¯ections. The difference

between two intensities is divided by their sum to give a

unitless quantity, L, de®ned by

L � I�h1� ÿ I�h2�
I�h1� � I�h2�

; �1�

where h1 and h2 are unrelated re¯ections and the range for L is

ÿ1 to 1. A similar parameter, H, was introduced earlier

(Yeates, 1988) to describe the difference between two re¯ec-

tions related by a twin law. A different notation, L, is used

here because the two re¯ections under consideration are not

twin-related, but are proximally located in reciprocal space.

We assume that two such re¯ections will have similar expected

values and probability distributions. This will be the case even

when the diffraction is anisotropic, owing to the proximity of

the chosen re¯ections. Furthermore, if the two re¯ections are

chosen so that the differences between their corresponding

indices are all even, then they will have the same parity and

will have similar expected intensity values in the presence of

some of the most commonly encountered kinds of pseudo-

centering, including cases where one unit-cell axis becomes

doubled or one unit-cell face becomes centered. More unusual

kinds of centering may require re¯ections to be chosen

differently if they are to remain in the same class of expected

intensity values. Finally, because dividing by the sum of the

two intensities already effectively normalizes L, no further

normalization (e.g. in resolution shells) is required; the

assumption is avoided that re¯ections in the same resolution

shell have similar expected values.

We assume that it is fair to treat the two re¯ections being

compared as having arisen independently from the same

Wilson distribution (see x2.5). The cumulative probability

distribution, N(L), of the parameter L is derived in

Appendix A and also follows from expressions derived

previously (Yeates, 1988). For acentric data (Table 1)

N�jLj� � jLj: �2�
The cumulative probability distribution of a variable is the

probability that it will take on a value less than some given

value, and the derivative of the cumulative probability distri-

bution is the ordinary probability density function. The

expected values for |L| and L2 are (see Appendix A)

hjLji � 1=2 �3�
and

hL2i � 1=3: �4�
For centric data (Table 1), N(|L|) = (2/�)arcsin(|L|), h|L|i = 2/�
and hL2i = 1/2, although for biological molecules the centric

data are fewer in number and therefore less powerful diag-

nostically. These expressions can be derived in a similar

manner to those in Appendix A and also follow from earlier

ones (Yeates, 1988) by letting the twin fraction � equal zero.

2.1. An example with anisotropic data

A diffraction data set showing signi®cant anisotropy was

selected from the PDB (Berman et al., 2000). The structure is

that of cyclophilin A (P43; a = b = 54.2, c = 63.4 AÊ ; PDB code

1awu; Vajdos et al., 1997), for which diffraction was stronger

along the direction of the c axis compared with other direc-

tions. The acentric intensity statistics for observed data

between 3.5 and 2.5 AÊ were ®rst examined in the usual way

and were found to be signi®cantly perturbed (Fig. 1a). Fig. 1(a)

illustrates that the observed cumulative intensity distribution

falls nearly midway between the curves expected for centric

and acentric data. Also, a value of 2.54 was obtained for

hI 2i/hIi2 over acentric data in the resolution range given

above; the theoretical values for acentric and centric data are

exactly 2 and 3, respectively. The statistics of the local intensity

differences were then examined using the same data. The

observed distribution of the parameter L follows the theore-

tical distribution for acentric data much more closely (Fig. 1b).

The observed values of h|L|i and hL2i are 0.52 and 0.36, which

are much closer to the theoretical values for acentric data (1/2

and 1/3) than those for centric data (2/� and 1/2) (Table 1).

The results show that the problematic effects of anisotropy are

diminished greatly by the present method. While it may be

true that traditional methods will work if anisotropy can be

modelled simply and corrected (Blessing, 1987), the present

approach should also apply to various kinds of anisotropy that

are hard to model because they go beyond simple elliptical

corrections.

2.2. An example with pseudo-centering

When non-crystallographic symmetry causes molecules to

pack in the unit cell with an approximate crystallographic

translation, the diffraction pattern may display pseudo-

centering, with strong and weak re¯ections in an alternating

arrangement. A diffraction data set displaying signi®cant

pseudo-centering was selected from the PDB (Berman et al.,

2000). The structure is that of clam hemoglobin (P212121;

a = 101.4, b = 93.8, c = 127.1 AÊ ; PDB code 1sct; Royer et al.,

1995). In this crystal, there are two �2�2 tetramers in the

asymmetric unit arranged to be nearly centered in the ab

plane, resulting in anomalously strong diffraction at re¯ections

for which h + k is even. Data were analyzed from 8 to 3.5 AÊ

resolution. Traditional intensity statistics showed aberrant

results (Fig. 1c), with a value for hI 2i/hIi2 of 2.73, in
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Table 1
Relations for L.

L is de®ned as [I(h1)ÿ I(h2)]/[I(h1) + I(h2)] for unrelated re¯ections h1 and h2.
N(L) is the theoretical cumulative distribution of L, valid for ÿ1 � L � 1.
N(|L|) is the theoretical cumulative distribution of |L|, for 0� |L|� 1. h|L|i and
hL2i are the expected values of |L| and L2. More complex expressions are
given in Appendix C for the case of partial twinning.

Type of re¯ection intensity N(L) N(|L|) h|L|i hL2i
Acentric, untwinned (L + 1)/2 |L| 1/2 1/3
Centric, untwinned arccos(ÿL)/� (2/�)arcsin(|L|) 2/� 1/2
Acentric, perfectly twinned (L + 1)2(2 ÿ L)/4 |L|(3 ÿ L2)/2 3/8 1/5
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disagreement with the theoretical value of 2. In contrast, when

the statistics of the local intensity differences were examined,

comparing nearby re¯ections of the same parity, the distri-

bution of the parameter L followed the theoretical curve very

closely (Fig. 1d), with values for h|L|i and hL2i of 0.49 and 0.32,

again in excellent agreement with the theoretical values of 1/2

and 1/3 (Table 1). This example of pseudo-centering provides

a particularly compelling illustration of the advantage of the

local intensity statistic.

2.3. Application to data perfectly twinned by hemihedry

In certain space groups, a specimen may grow so that it is

composed of distinct crystal domains whose orientations are

Figure 1
Robustness of local intensity difference statistics in the presence of anisotropic scattering and pseudo-centering. Theoretical distributions for acentric
data are shown by bold curves, while those for centric data are shown by the thinner curves. Distributions for observed acentric data are shown by open
circles. An example (PDB code 1awu) where anisotropic scattering was evident is shown in (a) and (b). The traditional method of analyzing the
cumulative distribution of intensity values normalized in resolution shells, where z = I/hI i, is shown in (a), where the observed distribution falls between
the two theoretical curves. In (b), the local statistic L = (I1 ÿ I2)/(I1 + I2), where I1 and I2 are unrelated intensities, follows the acentric curve closely. An
example (PDB code 1sct) where pseudo-centering was prominent is shown in (c) and (d). For the acentric data, the traditional cumulative intensity
distribution nearly follows the theoretical curve for centric data owing to the effects of pseudo-centering (c). In (d), the local statistic follows the
theoretical curve for acentric data very closely. In evaluating the local statistics in (b) and (d), two re¯ections were compared if they were of the same
parity but were otherwise nearly adjacent (i.e. the difference between corresponding re¯ection indices was required to be 0 or 2). Every such pair of
re¯ections was included.



crystallographically distinct, but whose reciprocal lattices are

superimposed (Buerger, 1960; Donnay & Donnay, 1974;

Yeates, 1997); this is referred to as hemihedral twinning. In

cases where the two twin domains represent equal or similar

volumes (i.e. the twin fraction � nearly equals 1/2), the

observed diffraction pattern acquires an erroneous arti®cially

high apparent symmetry. This pathological situation, referred

to as perfect twinning, is generally discovered by analyzing

intensity statistics, as they are distinctly affected. However, as

discussed earlier, a number of effects (including anisotropy

and pseudo-centering) can perturb traditional intensity

statistics dramatically. These perturbations tend to counteract

and mask the presence of twinning. On the other hand, the

statistics of local intensity differences are relatively immune to

the effects of anisotropy and pseudo-centering, while still

being sensitive to the effects of twinning, as shown below. The

statistics of the parameter L can therefore be applied effec-

tively to the problem of detecting perfect twinning. Twinning

statistics may also be in¯uenced by intensity measurement

errors (Dumas et al., 1999), but the effects of errors are not

examined here.

It can be shown (see Appendix B) that when observed

intensities arise from perfect twinning, the cumulative prob-

ability distribution of L takes a form different from the case

with ordinary intensities (Table 1). Speci®cally, for acentric

re¯ections,

N�jLj� � jLj�3ÿ L2�=2: �5�

The expected values for h|L|i and L2 are (see Appendix B)

hjLji � 3=8 �6�

and

hL2i � 1=5: �7�

It is worth re-emphasizing that the two re¯ections being

compared here are locally proximal and not twin-related to

each other. This is in contrast to earlier analyses (Dunitz et al.,

1972; Fisher & Sweet, 1980; Yeates, 1988), which applied to the

situation of partial twinning rather than perfect twinning and

which involved the comparison of twin-related re¯ections.

An example illustrates the interplay between twinning and

other factors that can affect intensity statistics. Crystals of the

VP5CT protein from rhesus rotavirus (Dormitzer et al., 2001)

were suspected of being twinned, but traditional intensity

statistics were confounded by the presence of pseudo-

centering (Philip Dormitzer, personal communication). As

illustrated in Fig. 2(a), the observed intensity distribution was

shifted away from rather than towards the theoretical curve

expected for twinning. As another indicator, for acentric data

between 20 and 3.5 AÊ resolution, hI 2i/hIi2 was 2.37, which is

closer to the theoretical value of 2 expected for ordinary data

than it is to the theoretical value of 1.5 expected for perfectly

twinned data. In contrast, the distribution of the local para-

meter L gave a clear indication of twinning, as seen in Fig. 2(b).

Also, the average values of |L| and L2 were 0.40 and 0.22,

which are likewise consistent with signi®cant twinning

according to Table 1. The presence of a high degree of twin-

ning was subsequently con®rmed by other analyses, such as a

®nding that hI2i/hIi2 fell to 1.64 when the calculation included

only re¯ections for which the indices were all even.
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Figure 2
Utility of local intensity difference statistics in detecting perfect twinning
in the presence of confounding factors. Theoretical distributions for
acentric data are shown by bold curves, those for centric data are shown
by the thinner curves and those for perfectly twinned (acentric) data are
dashed. Distributions for observed acentric data are shown by open
circles. The data are from a crystal of the VP5CT protein from rhesus
rotavirus (Philip Dormitzer, personal communication). The specimen was
highly merohedrally twinned and also displayed pseudo-centering. In (a),
traditional intensity statistics, where z = I/hI i, give no indication of
twinning, as the effects of pseudo-centering dominate. In (b), the local
statistic nearly follows the theoretical curve for twinned data, despite the
presence of pseudo-centering.
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2.4. The case of partial twinning

Table 1 gives the theoretical cumulative distribution of L,

along with expected values for |L| and L2, for ordinary data

and for perfectly twinned data. Partial twinning is the inter-

mediate situation in which the distinct twin domains are of

signi®cantly unequal volumes; the twin fraction � is less than

1/2. In the presence of partial twinning, the statistics for L

depend on �, given by complicated expressions discussed in

Appendix C. These expressions for the expected values of |L|

and L2 were veri®ed by comparison to numerical simulations

of ideal Wilson-distributed data transformed by a twinning

operation (Fig. 3). Owing to the shape of the curves, the

parameter L is not suited to giving accurate estimates of the

twin fraction � for specimens that are highly twinned. Even in

cases of partial twinning, where � is relatively small, experi-

ence has shown that other methods that directly compare

twin-related re¯ections (Britton, 1972; Fisher & Sweet, 1980;

Murray-Rust, 1973; Rees, 1982; Yeates, 1988) give more reli-

able estimates of � than methods such as the present one. The

present method is especially relevant to the problem of

detecting perfect twinning; it may also give an indication of

partial twinning, but other methods are recommended for

subsequently estimating the twin fraction.

2.5. On the independence of neighboring reflections

Our analysis assumes that the intensities of neighboring

re¯ections are statistically independent. However, the atoms

in a molecular structure are not distributed randomly, leading

to potential correlations between the structure factors for

distinct re¯ections. The limits of this assumption must there-

fore be examined. To do so, we analyzed a group of diffraction

data sets extracted from the PDB (Berman et al., 2000). The

data sets were chosen as the ®rst ®ve from an alphabetical list

satisfying certain criteria, such as a resolution of at least 2.2 AÊ ,

a protein with at least 200 amino acids with only one molecule

Figure 3
The dependence of the expected values of the local intensity statistic, L,
on the twin fraction for partially twinned specimens. The expected value
for |L| is shown by ®lled dots. The expected value for L2 is shown by
un®lled diamonds. The data points (dots and diamonds) represent values
obtained by numerical simulation. The curves are drawn according to the
theoretical equations derived in Appendix C. Precise agreement is
obtained between the theoretical equations and the simulated values.

Figure 4
An examination of potential correlations between the intensities of
neighboring re¯ections in macromolecular diffraction data. (a) The
correlation coef®cient is shown between pairs of neighboring re¯ection
intensities as a function of resolution. The difference, �, is the sum of the
absolute values of the differences between the three corresponding
re¯ection indices for two re¯ections. Small but measurable correlations
are evident when � is small, but vanish for values of � greater than 2.
Five arbitrarily selected data sets were examined (1a48, black; 1a53, blue;
1a6q, green; 1a8f, red; 1a8q, purple). (b) The behavior of the parameter L
as a function of the distance between re¯ections, calculated over the same
data sets as in (a). Deviations from the theoretical value (h|L|i = 0.5) are
small, especially for � > 2.



per asymmetric unit to avoid potential pseudocentering and a

unit cell typical of protein crystals (i.e. axes longer than 50 AÊ );

the chosen data sets were 1a48, 1a53, 1a6q, 1a8f and 1a8q. We

calculated the correlation coef®cient between neighboring

re¯ection intensities as a function of resolution and as a

function of the difference between the indices of the two

re¯ections being compared. As shown in Fig. 4(a), the corre-

lations are generally weak, with values only occasionally

exceeding 0.1 in magnitude. The small correlations evident in

the case where the re¯ections are adjacent (� = 1) essentially

vanish as the re¯ections being compared have combined

differences in their indices exceeding two (� > 2).

The relative independence of neighboring re¯ection inten-

sities over the 10±2.5 AÊ resolution range tested is borne out by

the behavior of the parameter L (Fig. 4b). Observed devia-

tions from theoretical behavior (h|L|i = 0.5) are small even for

� = 1. For re¯ection pairs with � > 2, the variations from

ideality are small enough to be attributed to random noise

from ®nite sampling. The results suggest that an optimal

strategy for evaluating the parameter L may be to compare

re¯ections which are relatively close together but whose

indices differ (in total) by more than two.

3. Summary

The statistics of local intensity differences are insensitive to

the effects of anisotropic scattering and, if re¯ection pairs are

chosen appropriately, to the effects of pseudo-centering,

effects which confound traditional intensity statistics. The

parameter L is more robust for discriminating between

acentric and centric data and for detecting perfect twinning.

Because this new statistic appears to perform as well or better

than traditional intensity statistics, we suggest that the distri-

bution of L should supplement or perhaps supplant some of

the intensity analyses in current use.

APPENDIX A
The statistics of local differences between unrelated
acentric reflection intensities from an untwinned
specimen

For acentric data from an untwinned specimen, the probability

density function for intensities is

P�I� � k exp�ÿkI�; �8�
where k = 1/hIi. Denote two unrelated intensities by I1 and

I2. Then from (1), L � (I1 ÿ I2)/(I1 + I2). This leads to

I2 = I1(1 ÿ L)/(1 + L), which sets the integration limit for

evaluating the cumulative distribution for L, N(L),

N�L� � RI1�1

I1�0

RI2�1

I2�I1�1ÿL�=�1�L�
P�I1; I2� dI2 dI1: �9�

Substituting from (8),

N�L� � RI1�1

I1�0

RI2�1

I2�I1�1ÿL�=�1�L�
k2 exp�ÿk�I1 � I2�� dI2 dI1; �10�

which integrates to give

N�L� � �L� 1�=2: �11�
Noting that P(L) = [dN(L)/dL], we take the derivative of (11)

to obtain the probability density function

P�L� � 1
2 : �12�

From (12) we can integrate again to obtain the cumulative

distribution of |L|,

N�jLj� � jLj: �13�
From (12), the expectation values for |L| and L2 can be

calculated,

hjLji � R0
ÿ1

ÿLP�L� dL� R1
0

LP�L� dL; �14�

yielding

hjLji � 1=2 �15�
and

hL2i � R1
ÿ1

L2P�L� dL; �16�

yielding

hL2i � 1=3: �17�

APPENDIX B
The statistics of local differences between unrelated
acentric reflection intensities from a perfectly twinned
specimen

From the probability density function for intensities for

acentric data from an untwinned specimen, (8), it can be

shown that the probability density function for intensities

from a perfectly twinned specimen is

P�I� � k02I exp�ÿk0I�; �18�
where k0 = 2/hIi, (Rees, 1982; Stanley, 1972).

Denote two unrelated intensities, both perfectly twinned, by

I1 and I2. Again from (1), the same integration limits as in

Appendix A are found for evaluating the cumulative distri-

bution for L, N(L). Substituting from (18) into (9),

N�L� � RI1�1

I1�0

RI2�1

I2�I1�1ÿL�=�1�L�
k04I1I2 exp�ÿk0�I1 � I2�� dI2 dI1;

�19�
which integrates to give

N�L� � �L� 1�2�2ÿ L�=4: �20�
As in Appendix A, we take the derivative of (20) to obtain the

probability density function,

P�L� � 3�1ÿ L2�=4: �21�
From here we can integrate to obtain
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N�jLj� � jLj�3ÿ L2�=2: �22�

From (21), the expected values for |L| and L2 are found to be

hjLji � 3=8 �23�

and

hL2i � 1=5: �24�

APPENDIX C
The statistics of local differences between unrelated
acentric reflection intensities from a partially twinned
specimen

For acentric data from a partially twinned specimen, the

observed twinned intensities are the sum of intensities, IA and

IB, from each of the twin domains, weighted by the volume

fraction of the twin domain,

Itwin � �1ÿ ��IA � �IB: �25�

From the probability density function for untwinned acentric

re¯ections (8), we can write out a new density function for

partially twinned re¯ections,

P�Itwin� �
RItwin

I�0

k

�
exp
ÿkI

�

� �
k

�1ÿ �� exp ÿ k�Itwin ÿ I�
�1ÿ ��

� �
dI;

�26�
which integrates to

P�Itwin� �
k

�1ÿ 2�� exp ÿ k

�1ÿ �� Itwin

� �
ÿ exp ÿ k

�
Itwin

� �� �
:

�27�
Now we let I1 and I2 represent two intensities that are each

partially twinned, but not twin-related to each other, each

following the probability density in (27). The integration limit

for the cumulative distribution function is set up as in

Appendices A and B. Substituting into (9), we obtain

N�L� � R1
I1�0

R1
I2� 1ÿL� �

1�L� �I1

k2

�1ÿ 2��2 exp ÿ k

�1ÿ �� I1

� �
ÿ exp ÿ k

�
I1

� �� �

� exp ÿ k

�1ÿ �� I2

� �
ÿ exp ÿ k

�
I2

� �� �
dI2 dI1; �28�

which evaluates to

N�L� � 1

�1ÿ 2��2
� ��2 � �1ÿ ��2��1� L�

2

ÿ ��1ÿ ��
2�1� L�

�1� �1ÿ 2��L� ÿ
�2�1ÿ ���1� L�
�1ÿ �1ÿ 2��L�

�
: �29�

Taking the derivative, using Mathematica (Wolfram Research

Inc., 1999), we obtain the probability density function

P�L� � 1

�1ÿ 2��2
�
�2 � �1ÿ ��2

2
ÿ ��1ÿ ��2
�1� �1ÿ 2��L�

ÿ �2�1ÿ ��
�1ÿ �1ÿ 2��L� �

��1ÿ ��2�1ÿ 2���1� L�
�1� �1ÿ 2��L�2

ÿ �
2�1ÿ ���1ÿ 2���1� L�
�1ÿ �1ÿ 2��L�2

�
: �30�

This can be used to obtain expressions for the expected values

h|L|i and hL2i as functions of the twin fraction �,

hjLji � �1ÿ 2��2�1ÿ 6�� 6�2� ÿ 8�1ÿ ��2�2 ln�4��1ÿ ���
2�1ÿ 2��4

�31�

hL2i �
�1ÿ 2���1ÿ 12�ÿ 4�2 � 32�3 ÿ 16�4� � 24�1ÿ ��2�2 ln 1ÿ�

�

ÿ �
3�1ÿ 2��5 :

�32�

Plots of these expected value functions versus � are found in

Fig. 3.
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